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The discrete Z-transformation is applied to the solution of heat-conduction prob- 
lems in a plate with various boundary conditions. 

The trend of recent years has been toward a wider use of the apparatus of the discrete 
Laplace or Z-transforms=ion for =he analysis of ~he dynamics of compuner-controlled objects 
[1-4]. S=udies have demonstrated that =his apparatus can be successfully applied to those cases 
where the object of control is a temperature field. In such a case the problem reducesp in 
practical terms, to the solution of the hea=-conduction problem by means of that apparatus. 
We will consider its application to the example of a temperature field in a plate. For 
simplicity, we start with the one-dimensional heat-conduction equation 

1 0 t  ~ t  
- -  ( l )  

We w i l l  use =he concept of the g r i d  f u n c t i o n  of  t ime t [ nAz ,  x ] ,  or  t [ n ,  x]  i n  abr idged 
form, the values of which are defined a= discre=e instants of time T = nAT. The values of 
this grid function tin, x] coincide with the values of the continuous function t(~ , x) at 
the same instants of time, function =(r, x) constituting the principal envelope of the grid 
function t[n, x]. The grid function analog of the first derivative of the continuous func- 
tion is the first difference, e.g., =he reverse difference 

At[n, x]= t[n, x l - - t [n - -1 ,  x]. (2) 

After a change =o referred coordinates, Eq. (i) accordingly becomes 

d~t 
f Zu~[n,u]-- t In, u] + t [ n - -  1, u] = O. (3) 

For solving Eq. (3) we will use the discrete Z-transformation realizable by means of the 
relation 

Z{t-[n]} = T(Z) = 2 t[ ,q z -~. (4) 
n = O  

It is to be noted that multiplication of the transform T(z) by z -~ corresponds to a time 
delay by one discretizatlon interval, viz., Z-X{z-tT(z)} = t[n -- i], and that, furthermore, 
the transform of the k-th reverse difference becomes 

Z {Akt [~l} = (1 - -  z-9 k T (z)  (5) 

when the grid function vanishes identically for negative arguments [I]. 

Application of transformation (4) to Eq. (3) reduces ~he latter to 

dZ T[z, u]- - (1- -z  -~) T(z, u)=0.  (3a) f du-T 

The solution to  Eq. (3a) is 

T(z, u) = Coo~hC'f-,(1 --z- ' )  u = C ~ P~(u) t - 'O  - - z - %  (6) 
i = 0  

This solu=ion has been obtained for the boundary condition 
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at the  surface x = 0 (u = 0). 

and 

Ol Ot 
ox[n'O]=O or On [ n , 0 ] = 0  (7) 

In  e x p r e s s i o n  (6) we use  the  n o t a t i o n  

P,  (u) u2~ - ( 8 )  

It can be demonstrated that for the boundary condition (7) C = T(z, 0) in solution (6) 
therefore 

T(z, u) = T(z, O) '~  Pi(u) f-i(l  --z- l)  i, (6a) 
i = 0  

An inverse transformation, according to relation (5), yields 

t [n, ul = ~ Air [n, 0l Pi (u) I -~. (9) 
i = 0  

Let 

where C i 

Then 

i 

Et[nl = ~ (--1)~C~ttn--v], 
V=0 

are binomial coefficients (numbers of combinations) and let 
n 

C v p . . . .  i A~(u, f ) = ( - - l )  v ~  i ~tu) l . 
i=V 

t [n, u] = ~] A. (u, [) t I n - -  v, 0]. 
" ~ 0  

Expression (9a) written for the transforms becomes 

T(z, u) = T(z, 0) ~ Av(u, l) z-L 
v = 0  

We will now consider boundary conditions of the first kind at the heated surface 

tin, x = l l = t [ n ,  tl; t = [ n '  u = l l = t I n ,  11; Z{iIn, 1]}=T(z,  1). 

With the aid of expression (9b), we find that 

~.A,, (u, f)z-" 
T(z, u)----T(z, 1) v=--o 

~ A ~  (1, i) z-~ 

o r  

(9a) 

(9b) 

(io) 

T (z, u) = T (z, 1) ~ By (u, [) z -v. (10a) 
V=0 

Functions A~(u, f) and B(u, f) are related through the recurrence formulas 

i 

Bi(u)----Aoil) [A,(u)-- E Aj (1)Bi_ j (u) ]. (11) 
/ = l  

An inverse transformation in expression (i0) can be effected by various methods. We 
will rewrite this expression as follows: 

2 ~ r(z, u) &(1, /) z-~ = T(z, 1) ~ &(u, 0 z-~. 
v=O ~ 0 
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Fig, 1. Schematic block diagram fo r  r e a l i z a t i o n  of the t rans -  
fe r  function according to expression (i0), 

Using the originals, we obtain 

0 1 

(12) 

where 

a~(u, D = A. (u, DIAo (1, D. 

Realization of the transfer function corresponding to expression (I0) is shown schemazi- 
cally on the block diagram in Fig. i, based on using adder elements, multiplier elements, and 
a time delay element. This schematic diagram corresponds to a limits=ion of the number of 
terms in the sums in expressions (i0) and (12) to m~n. According to the results of analysis, 
m = 3-5 is sufficient for engineering calculations. 

Another realization of the algori=hm corresponding to expression (I0) is as follows. 
This expression can be replaced, in accordance with relation (95), with two expressions for 
transforms of the temperature functions 

T(z, 1)=T(z ,  0) ~ A~(1, [)zV; 
0 

T (z, u)= T (z, O) ~ A~ (u, f)z - ' .  
0 

From these expressions we obtain two expressions for originals of the temperature function 

t [tz, u] = Z t [ n - -v ,  0] A~ (u, /); (12a) 
8 

t[n, 11 E a~(l) ( In - -v ,  01. (lZb) t In, O] Ao (1, [) 1 

The scheme for realization of the algorithm corresponding to expressions (12a) and (12b) is 
shown in Fig. 2. 

From equality (10a) follows the simplest algorithm 

tin, u]= ~ By(u, [)t[n--v, 1]. (12c) 
v = O  

Ins realization is shown schematically in Fig. 3. 

1261 



_ ~ o ( U )  
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-Clm-f ( ,~  , 
-~m~ 

Fig, 2. Schematic b lock diagram fo r  r e a l l z a t i o n  of the t rans -  
fe r  function according to expressions (12a) and (12b). 

Each of the proposed schemes has its advantages. The scheme in Fig. i ensures storage 
in the memory of the last m values of the sought function, viz., the temperature at the 
point whose coordinate is u. The scheme in Fig. 2 requires fewer memory cells (time delay 
elements) for realization and, at the same time, provides immediate determination of two 
temperatures: at the point whose coordinate is u and at the point on the insulated surface 
u = 0. The, last m values of t(u = 0) are stored in the memory. The scheme in Fig. 3 is 
simplest of all. 

Boundary conditions of the second kind at the heated surface of the plate can be given 
in terms of the relation 

0t 
--[n,l] = yxI[n], (13) 
au 

which, after a Z-transformation and according to relation (9b), yields the solution for the 
transform 

where 

• ]  A~(u, f )z  -~ 
T(z, u) = Y"(z) = ~=o 

~ ,  A~I(1, f) z -~ 
~,~ 0 

(14) 

m 

A~ ~(I f ) :  dA~ (I, f ) : ( - - 1 )  ~ _vdP,  
' du ~ ~i d--u- ( I ) t - ~ ;  

i=v (15) 

dPz ( 1 ) -  1 
du (2i--1)! 

The corresponding expressions for =he originals are the same as expresslons (12) and (ii), 
with t[n, i] replaced by yll[n] and Au(l, f) replaced by ~I(i, f). 

In practice, it is often more convenient to use calculation formulas derived by reduction 
of the problem with boundary conditions of the second kind to the problem with boundary condi- 
tions of the first kind. The gist of this method is that one determines first the temperature 
of the heated surface of the plate at a given instant of time, t[n, i], and then the sought 
temperature. 

For the derivation of the corresponding calculation formulas we will use expressions 
(lOs) and (13), which yield 
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tin/] ~inU] :En2,/] :[n m+Zi] t[n m+I/] ~[nal]~ ,u~--~ 

~>4(u) 
Fig. 3. Schematic block diagram for realization of the algorithm 

according to expression (12c). 
nz 

yH (z) = t(z, 1) E B~:z-~; B~H-- dB~du (1, D. (16) 

0 
After a few simple transformations, we obtain the originals 

frl 

t [n,  l ] = b ~ l y 1 1 [ n l - -  ~7 b~It[n--v, 11; 
~=l ( 17 )  

b~I r~II.-i II ~_ DIIIDII = t o] ; by z~v~o �9 

Boundary conditions of the third kind at the heated surface can be given, after a change 
to grid functions, as 

1 Ot 
t[n, 1] = 4 [h i  In, 1]. (18)  

Bi [hi Ou 

The simplest way t o  solve the problem when the heat-transfer coefficient is variable is 
by reduction to the problem with boundary conditions of the first kind. In this case one 
determines first the temperature t[n, i] of the heated surface according to the relation 

Bi In] BIo I , ~  
t[n, l l = : t c [ n  I Bi[n]_}_B~ ~ g i [ n l + B ~  ~ ~ b~t[n--v,  II, (19) 

and ~hen the sought temperature according to relations (12). The advantage of this method 
of calculation is that only one value of Biot number is used on each step, namely the value 
which corresponds to the given instant of time. 

Using these solutions obtained by the method shown here should greatly reduce the volume 
of calculations in cases where the temperature is t o  be determined at one or several points 
across the thickness of a plate (or bodies with other geometrical configurations), since this 
can be done here without calculating the temperature at other points (as is necessary in con- 
ventional grid methods). This feature becomes important in the construction of algorithms 
for computer-controlled heating of solid objects or equipment components (such as in power 
plants). Computers used for this purpose have, as a rule, a limited direct-access memory. 
Meanwhile, the parameters which determine the reliability of the heating (or cooling) process 
are either the temperatures at specific points of the object (e.g., at the heated surface) 
or simple functions of zhese temperatures: rate of change of temperature, mean-integral (over 
the plate thickness) temperature, temperature difference proportional to thermal stress, etc. 
The solution obtained here by the methods shown were used by the author in the construction, 
among others, of algorithms for controlling the heating of large steam turbines during start- 
up. 

NOTATION 

t, temperature; x, space coordinate; l, plate thickness~time; AT, discretization 
interval; n and m, integers; AT* = 12/a; f = AT/AT*; u = x//~A*z;z = exp(sAT); s, Laplace 
operator; y(_.II= (7/~)q(~); ~, thermal conductivity; q(T), thermal flux; a, thermal diffusiv- \,l 
ity; Bi= u~A, Biot number; tc, temperature of the heating medium; ~, heat-transfer coef- 
ficient; and T(z), Y(z), transforms of functions t, y obtained by discrete Z-transformation. 
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COUPLED PROBLEMS OF MASS TRANSFER BETWEEN SEMI-INFINITELY LARGE 

REGIONS DURING A CHEMICAL REACTION OF THE SECOND ORDER 

Yu. I. Babenko and N. Ya. Nikltina UDC 532.72:669.015.23:517.9 

By the method developed in an earlier study [i], an asymptotic expression (at 
times t + ~) is derived here for the rate of mass transfer at the boundary be- 
tween media when in one of them there takes place a chemical reaction of the 
second order. 

We consider the earlier problem [2, 3] concerning mass transfer in a semi-infinitely 
large region where a chemical reaction of the second order takes place, viz., 

OCi . D OzCi + leClC~ = O, 
Ot Ox z 

OC~ D c~gC2 -~- kCtC 2 -~- O, 
Ot Ox 2 

O ~ < x <  oo, O < t < o o ;  

0C2 
Cd~=0 = A = const; ~ ~=0 = O; 

= 0 ;  C2l ,~=|  Cd t=o=O;  C2[t=o = B .  cd~=| 

(1) 

(2) 

(3) 

The concentration of substance i at the boundary is maintained constant. 
x = 0 is impermeable to substance 2. 

We introduce for the analysis two new functions 

S i = C , ;  $ 2 = B - - C 2 ,  

so that system (i)-(2) can be rewritten as 

OS----!t -- D 02Si + kS,  (B -- $2) = O, 
at Ox ~ 

0S2 D 0~$2 - -  kSi  (B - -  $2) = O. 
at o ~  

The plane 

(4) 

(5) 

Conditions 
of the given method or solution, that Sa = 0 at t = 0 and x = ~. 

Adding the two equations (5), we obtain 

O 0 z 
- - ( S ~ , +  $2) - -  D,  (S~ + $2) ---- 0, 
Ot Ox 2 

(S~ + S~)~=,~ = 0; (S~ + S~)t=o = 0. 

(3) are transformed in an obvious manner. It is essential, for theapplication 

(6) 

(7) 
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